Decelerated Development of Rostral Anterior Cingulate Cortex Linked to Childhood Trauma

Sattvik Basarkod¹, John M. France¹, Shaurel Valbrun¹, Charis N. Wiltshire², Tate Poplin¹, Sterling Winters¹, Sophie A. George¹, Tanja Jovanovic¹

¹Dept of Psychiatry and Behavioral Neurosciences, Wayne State University ²Dept of Epidemiology, Emory University

BACKGROUND

- Childhood trauma exposure is a major risk factor for subsequent stress-related psychopathology including generalized anxiety (GAD), major depression (MDD) and post-traumatic stress disorder (PTSD).
- Alterations in prefrontal cortical (PFC) development during childhood may affect emotion regulation and executive functioning underlying psychiatric illness. The amygdala is a critical brain structure that detects threat and initiates sympathetic arousal. The medial PFC regulates and dampens amygdala reactivity to stress.
- We hypothesized that higher trauma severity will be related to decelerated development of the prefrontal cortical regions during age 9-11, hence moderating future psychopathology risk.

METHODS

Participants: 58 children (35 F) were scanned at age 9 y/o, and 41 of those children were scanned again at age 11 y/o, with 36 (20 F) having usable MRI data.

Procedures: T1 weighted structural images were acquired using 3T scanner. Trauma exposure scores using VEXR¹ and PTSD scores using the UCLA-RI² were collected at both visits. **Data analysis:** MRI data were analyzed and visualized using Freesurfer³ software. ENIGMA structural protocols were used to quality check cortical parcellations. Median split was done to separate children into higher and lower trauma group.

Regions of Interest: Rostral anterior cingulate cortex (rACC), medial orbitofrontal cortex (mOFC), frontopolar cortex (FPC), amygdala, hippocampus, gray matter volume, and total cortical volume.

0.0105	0.919	
5.1269	0.033	
0.6763	0.417	
0.3258	0.572	
0.8520	0.362	
	0.0105 5.1269 0.6763 0.3258 0.8520	0.0105 0.919 5.1269 0.033 0.6763 0.417 0.3258 0.572 0.8520 0.362

Table 1: Corticolimbic changes during age 9-11 between higher and lower trauma group.

Figure 2: Change score (V2 – V1) in rACC thickness and volume was lower in higher trauma group. Thickness: F= 5.13, p= 0.03 Volume: F= 7.49, p= 0.01

р

0.660

0.860

0.010

0.330 0.367

0.360

0.1968

0.0314

7.4938

0 9861

0.8363

0.8617

and volume between age 9 and 11 in children with higher trauma exposure

REFERENCES

Fox, N. A. & Leavitt, L. A. (1995). The Violence Exposure Scale for Children-VEX. College Park, Maryland: Department of Human Development, University of Maryland. Doric A, Stevanovic D et al. (2019) UCLA PTSD reaction index for DSM-5 (PTSD-RI-5): a psychometric study of adolescents sample from communities in eleven countries. Eur J Psychotraumatol. doi: 10.1080/20008198.2019.1605282. Fisch IB et al. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage. doi: 10.1016/file auresimage. 2004.07.016